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Abstract

Therapeutic monoclonal antibodies (mAbs) are typically manufactured using mamma-

lian cell cultures in fed-batch bioreactors, with increasing emphasis on meeting pro-

ductivity and product quality attribute targets that depend strongly on such process

variables as nutrient feed rates and bioreactor operating conditions. In this article, we

identify, categorize, and address the challenges of achieving both productivity and

product quality goals simultaneously, by developing a multivariable, model-based

control system that can satisfy multiple production objectives in a fed-batch cell cul-

ture process. Here, we discuss model development and present theoretical concepts

of observability and controllability that are essential to understanding and handling

effectively these intrinsic challenges. Subsequently, we evaluate via simulation the

performance of the outer-loop model predictive control and demonstrate the overall

capability to satisfy complex production objectives in a laboratory scale bioreactor, as

a first step toward the ultimate goal of creating an advanced control system for fed-

batch mAb manufacturing processes.
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1 | INTRODUCTION

Monoclonal antibody (mAb) drugs enjoy a high share of the global bio-

pharmaceutical products market, valued at about US$115 billion in

2018 and predicted to grow at a rate of over 14% in the next few

years.1 Achieving desired productivity and product quality targets in a

consistent manner remains one of the major challenges of biopharma-

ceutical manufacturing.2 For mAb manufacturing, protein titer and

biomass are the most common productivity attributes; extent of gly-

cosylation, glycan distribution, charge variants, and protein aggregates

are the most common critical quality attributes (CQAs).3 Because

glycosylation—an enzymatic, post-translational process by which

sugar molecules (i.e., glycans) are added to or removed from mAbs—is

non-templated, the resulting distribution of glycans is often highly

variable and difficult to control. However, the distribution of glycans

is an important CQA of mAb therapeutics because glycans can alter

the in vivo function of antibodies, either triggering or inhibiting desir-

able therapeutic effects, depending on the drug's target and mecha-

nism of action.4–6 In addition, glycan distribution affects the serum

half-life and immunogenicity of antibodies, which can factor into dos-

age frequency and patient safety. Consequently, an effective and

robust process control strategy that can maintain high protein titer

and ensure that all CQAs (including glycan distribution) are within

allowable ranges is essential to efficient mAb manufacturing.
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Significant progress has been made in regulatory control of nutri-

ent and metabolite levels in Chinese hamster ovary (CHO) cell cul-

tures using online sensing technologies (e.g., Raman spectroscopy).7,8

However, online control strategies at the product-attribute level (for

controlling productivity and quality attributes) currently do not exist

in commercial mAb manufacturing for a variety of reasons, including

process complexity, lack of reliable online sensors, and other technical

factors reviewed subsequently in this article and in reference 9.

Instead, various attempts at using predetermined (open loop) and

heuristic-based process operating protocols to meet the production

targets and improve yield and quality have been attempted, but with

limited effectiveness. Some notable examples that have been studied

and tested experimentally are: (1) Feeding Strategies, such as volume-

based feeding (which maintains a constant ratio between the amount

of feed medium added into the culture and the working volume of the

bioreactor throughout a run); cell count-based feeding10; glucose

concentration-based feeding11,12; pH-based, turbidity or oxygen

uptake rate-based feeding,13 all primarily developed by trial-and-error

and from heuristics. (2) Predetermined Temperature Profiles,14 (3) pH,15

and (4) Nutrient Supplementation.16 While some of these techniques

have improved the productivity and product quality of some specific

CHO cell culture processes, they are all strictly open-loop strategies,

with no feedback control to correct for the effect of unavoidable dis-

turbances; they are therefore unable to achieve specific production

targets precisely, and updating them for new processes requires re-

running an inordinately large number of experiments on the new pro-

cess. Most importantly, however, except for a few studies,16 many

approaches are capable of improving only one production attribute at

a time, not all simultaneously.

To summarize: the goal of modern biomanufacturing is relatively

easy to state—it is to achieve desired specification targets for the final

mAb titer and CQA profile, simultaneously, consistently, and

repeatably—but achieving this goal has been difficult. Our objective

with this work is to present a rational framework for achieving this

goal consistently. Our approach is based on using appropriate

dynamic process models for two central tasks: (1) to estimate critical

productivity and product quality attributes frequently throughout a

fed-batch reaction run, and (2) to determine how best to adjust appro-

priate process inputs, judiciously and continuously, in order to control

the final mAb titer and glycosylation profile simultaneously. This leads

us to identify four broad technical challenges to be addressed for suc-

cessful development and deployment of such a framework for effec-

tive advanced control of mAb production processes: modeling,

estimation, controller design, and controller implementation. It is

instructive therefore to present first an overview of the challenges to

be addressed before presenting the details of how we propose to han-

dle the challenges in developing the proposed framework. As such,

the rest of the article is organized as follows: first, in Section 2, we

present an Overview of these four challenges in general, with special

emphasis on the specific problems posed by bioprocesses, before dis-

cussing our proposed approaches in the Methods section (Section 3).

In Results and Discussion (Section 4), we present the first set of

results obtained from an experimental laboratory bioreactor and

evaluate the proposed control system's performance first in simula-

tion, as a precursor to a detailed discussion of the full experimental

implementation discussed in a follow-up paper. We draw insight from,

and discuss the implications of, the results (experimental and simula-

tion), and end the article with the Summary and Conclusions

section to put this article in context and to preview the implementa-

tion of the control system experimentally on a laboratory scale biore-

actor. A follow-up paper is devoted to a detailed discussion of the

control system implementation on a laboratory scale bioreactor and of

the experimental results.

2 | OVERVIEW

2.1 | Modeling

Regardless of the specific process in question, a validated process

model is useful for process understanding, process state estimation,

process output prediction, and process control.17 However, develop-

ing useful models for mAb manufacturing processes is particularly

challenging because of the complexity of bioprocess operations over

widely disparate length- and time-scales. For instance, the dynamics

of cell culture components (medium composition, cell population)

evolve slowly in time, and at a macroscopic length scale comparable

to the bioreactor size; the glycosylation of antibodies occurs at a

much faster rate at the molecular scale in an organelle within the cell.

The challenges associated with modeling these sub-processes appro-

priately at each scale are also different.

At the macro scale in the bioreactor, cell culture dynamics involve

cell metabolism, cell growth, and protein synthesis, with the concen-

trations of cells, metabolites, nutrients, and antibodies interconnected

through a vast metabolic network. Modeling the entire network and

including all the species involved would lead to a nonlinear

high-dimensional model with a large number of ordinary differential

equations (ODEs) to solve and many (kinetic and stoichiometric)

parameters to estimate. The values of most of those parameters are

not available in the literature and cannot be estimated easily. Further,

different process configurations (cell lines, media, operating condi-

tions, etc.) affect kinetic parameters and render parameters estimated

from one process configuration invalid for predicting process behavior

under new conditions. Determining such parameters empirically each

time is too time-consuming and too costly to be practical. In contrast,

semi-mechanistic cell culture models can be developed (e.g., reference

18) by merging multiple metabolic pathways and lumping kinetic

equations to obtain a system of ODEs of manageable size. However,

many semi-mechanistic model parameters no longer carry physical

meaning, and their values can be estimated only from experimental

data. While less cumbersome in size, these semi-mechanistic models

may still not be able to predict process dynamics accurately enough

under new process conditions because, having been developed with

limited mechanistic information specifically for certain predetermined

baseline process configurations, extrapolation to other conditions is

neither advisable nor effective.
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At the micro scale, the molecular level glycosylation process

occurs as a sequence of enzymatic reactions that modify antibodies

by adding or removing glycans. Developing appropriate models for

controlling glycosylation is challenging for the following reasons:

(i) the complexity of the underlying reaction network, which contains

more than 7000 unique glycans and over 20,000 reactions19; (ii) the

stochasticity of the process20; and (iii) the non-availability of precise

means of quantifying how process inputs affect glycosylation.

Furthermore, cell culture and glycosylation dynamics evolve over

widely differing time- and length-scales: macro-scale cell culture

dynamics evolve on the order of hours and days, while the micro-scale

glycosylation dynamics evolve on the order of minutes. Developing a

high-fidelity multiscale model that combines dynamics of disparate

time- and length-scales presents the first major challenge to develop-

ing an effective model-based control system.

2.2 | Estimation

A defining characteristic of mAb manufacturing processes is that

often, glycan distribution and other CQAs can be assessed only off-

line and at the end of a bioreactor run, rendering such assessments

ineffective for direct use in a feedback control scheme that otherwise

requires more frequent sampling. When a product attribute is off-tar-

get, end-of-run information is useless for taking any corrective control

action, for the obvious reason that such information would have

arrived too late. Off-line measurements, by nature, are infrequent, and

take a considerable amount of time to complete. Consequently, during

the long intervals between samples, process operators are blind to the

true state of the process; and by the time the analyses are completed,

the information produced would be obsolete. Ensuring that distur-

bances affecting the process can be compensated for expeditiously

requires reliable, on-time, and sufficiently frequent information about

the true state of the process variables to be controlled. Recently, mass

spectrometry (MS) and chromatography-based technologies have

been deployed to provide at-line glycan measurements, but the asso-

ciated cost and labor requirements prevent these measurements from

being practical for real-time process control.21

These limitations argue for a “soft sensing” approach where the

entire collection of measurable information, such as online bioreactor

sensor data, at-line cell culture measurements, and spectroscopic data,

can be combined with appropriate process models to provide, as fre-

quently as necessary, reliable estimates of the process states, glycan

distribution, and other CQAs that are not directly measurable by

“hard” sensors. In addition to the practical matter of how such “state
estimators” can be designed and implemented, is the more fundamen-

tal question: Is it always possible to estimate all the required process

states and product characteristics from the available measurements and

an appropriate model? This is the issue of observability, an important

concept in control theory. A system is observable if all its states can

be estimated from the available measurements; otherwise, it is unob-

servable. The design and implementation of a technique to generate

estimates of desired but unmeasured process and product variables,

at the appropriate frequency, using available measurements from a

bioprocess that may be “unobservable,” is the second major challenge

to address.

2.3 | Controller design

In the current context, controller design is the process by which one

obtains a scheme for adjusting appropriate process manipulated vari-

ables automatically, online, to meet the productivity and quality attri-

bute objectives. To be effective, the control scheme must have access

to desired process and product information and must be able to deter-

mine what variables to manipulate when and by how much. Solving

the problem of “estimation” as summarized above can provide the

required information; but the complexity of the bioprocess argues for

a model-based approach to the design of the controller. In this latter

sense, the inherent nonlinearity, high dimensionality, and multiscale

nature of the underlying dynamics of mAb metabolism and glycosyla-

tion raises the issue of controllability, another concept in control the-

ory that is complementary to observability noted earlier.

Informally, controllability is a measure of whether a system's

available manipulated variables are capable of steering the process

from any initial state to any other arbitrarily specified desired state in

the entire allowed operating space. Even without formal analysis, it is

evident, by mere observation, that a mAb manufacturing process has

far more glycan species to be controlled than available manipulated

variables, in which case controlling the entire glycan state is impossi-

ble; there simply are not enough degrees of freedom. However, while

protein glycosylation is uncontrollable in this sense, a legitimate ques-

tion to ask is: what extent of control can be achieved? A systematic

answer to this important question can be found in reference 22 where

St. Amand et al. quantified the controllability of glycosylation in a

latent space, showing which output modes (linear combinations of the

controlled variables) can be controlled using which input modes (linear

combinations of the manipulated variables in the original space) and

the strength or degree to which an input mode affects its correspond-

ing output mode.

2.4 | Controller implementation

The development of an advanced model-based controller for mAb

manufacturing processes, while necessary, is by no means sufficient.

Achieving the ultimate objective of real-time implementation in actual

practice on a real process requires that we contend with several non-

trivial practical issues such as: real-time data acquisition; data trans-

mission from the process to the computer and back, over a reliable

interface between the computer and the process; and control action

computation in real time. For model-based controllers, one must also

contend with inevitable model imperfections and their effect on con-

trol system performance.

This article is devoted to a detailed presentation of our approach

to tackling these challenges and a discussion of our results.
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Specifically, first, we introduce the rationale behind—and the method-

ology for—the design of the proposed control system and develop an

appropriate fed-batch CHO cell culture process model for the specific

lab scale bioreactor used in this study. Next, we show how the

model's parameters are estimated from experimental data; present

our approach to state estimation and controllability analysis; and then

assess the performance of the control system via simulation. A

detailed discussion of the experimental implementation of the control

system on a laboratory scale bioreactor is deferred to the follow-up

paper.

3 | METHODS

3.1 | Proposed control system

The natural structure of the mAb manufacturing bioprocess (especially

the intrinsic separation of time- and length-scales in the components

of the process) motivates us to propose the multivariable cascade

control strategy shown in Figure 1. The overall objectives are: (1) at

the base levels, to maintain the bioreactor at the desired operating

conditions; and (2) at the production level, to meet the final product

titer and product quality targets simultaneously.

As a result of the differing frequencies at which various measure-

ments are available, and the differences in the natural response times

of various components of the process, the cascade system involves

different controller types each with different control objectives. The

inner loop and the middle loop, shown in red, constitute two classic—

albeit multivariable—cascade regulatory controllers designed to main-

tain the bioreactor environment variables (pH, glucose concentration,

temperature, and dissolved oxygen (DO)) at the desired operating

conditions, using multiple classical PID (proportional-integral-deriva-

tive) controllers, with the middle-loop controllers establishing the set-

points for the inner-loop controllers. In the outer loop shown in blue,

productivity and product quality attributes are controlled using a mul-

tivariable model predictive controller (MPC). The MPC determines the

setpoints for the middle-loop controllers. While using a standard

(two-level) cascade control structure for single-input-single-output

(SISO) control of process variables is common in the chemical

industry, achieving effective control of product attributes (not just

process variables) and productivity requires the introduction of the

additional third level here. To the best of our knowledge, such a com-

prehensive three-level cascade control system does not exist in

biomanufacturing.

The inner control loop consists of several regulatory PID control-

lers responsible for regulating the primary bioreactor input variables,

such as the mass flow rates of feed material, metered through differ-

ent pumps, the power of a heating unit, and the motor power for the

impeller. These input variables affect such bioreactor operating condi-

tions as the concentrations of medium components, pH, DO, temper-

ature, and agitation speed directly. Often taken for granted, these

base-level regulatory controllers are essential to effective process

control because the effectiveness of higher-level, more sophisticated

controllers depends significantly on the performance of these regula-

tory controllers. For example, a poorly tuned and slow-responding

alkali flow controller that causes the alkali pump to respond too slowly

to setpoint changes, will result in excessive amounts of alkali added to

the reactor, with the undesirable consequence that the pH will over-

shoot its setpoint, regardless of how well the middle-loop controllers

and the more sophisticated outer-loop MPC perform.

The middle control loop also consists of several PID controllers

designed to maintain the bioreactor operating conditions, pH, DO,

temperature, and stirring speed, at desired setpoints by appropriate

manipulation of the bioreactor input variables (feed flow rate; heating

power; motor power) that are regulated by the inner-loop controllers.

Traditionally, the desired setpoints for these operating conditions are

predetermined prior to the beginning of a fed-batch run and remain

constant over the course of the run, unless, in an attempt to improve

productivity, special protocols, such as a shifting-temperature strat-

egy, are implemented.23 In the proposed cascade control system,

these setpoints are determined instead by the outer-loop MPC, and

can change as needed.

F IGURE 1 Block diagram of the proposed multivariable cascade control system.
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The outer MPC uses a process model to determine explicitly the

middle-loop controller setpoints required to meet production objec-

tives, by solving an optimization problem iteratively. Because the

MPC framework was developed to solve control problems with com-

plex and competing objectives, subject to constraints, it is ideal for

the highest-level control of typical bioprocesses whose objectives

include simultaneously achieving a high protein titer while confining

the glycan distribution within an acceptable range. At every sample

time, the inputs to the MPC are the current conditions within the bio-

reactor, and the desired product attribute objectives; the outputs are

the optimum desired values of feed rates and a set of bioreactor oper-

ating conditions, which are attained and maintained by the inner and

middle control loops.

While all three levels of control are indispensable components of

the overall control system, we focus primarily on the outer MPC in

this article because the design and implementation of the inner-loop

and the middle-loop controllers depend on mature techniques widely

available in biomanufacturing. As the theory for PID controllers used

in the inner and middle loops is mature, we assume that they are

tuned properly and can deliver effective regulatory control.

3.2 | Process modeling

Good mathematical models are critical to the success of model-

based control. In the context of biomanufacturing, models are

used to predict dynamic cell behavior based on such process

inputs as bioreactor operating conditions, feeding schedules, and

medium compositions, all of which have been shown to affect gly-

cosylation and cell metabolism,24–26 and hence are potential

manipulated variables for controlling productivity and product

quality attributes.

Although models that can be used to predict antibody formation

and/or glycosylation dynamics under predetermined process configu-

rations19,20,27,28 currently exist, adapting these models to new pro-

cesses remains a challenging task that often involves modifying the

model's structure, which can be time consuming. In a prior work,29 we

developed a modular approach to adapting an existing first-principles,

mechanistic, process model, f0, (which consists of systems of Monod

and Michaelis–Menten equations), to new process conditions, without

having to modify the model's structure. Instead, a supplemental input

effect model, Δ, was trained using input response data from designed

experiments, to “patch” f0 such that the augmented model, f, can

describe the dynamics under new process conditions more accurately.

The resulting hybrid model is represented by Equation (1):

dx
dt

¼ f x,u0,u;θ,βð Þ¼ f0 x;θð ÞþΔ x,u�u0;βð Þ, ð1Þ

where x and u are, respectively, vectors of the state and input vari-

ables, and u¼ u0 represents the process inputs at the baseline levels;

θ and β are, respectively, vectors of the base model parameters and

the supplemental input effect model parameters.

We adopt the same approach in developing a process model to

use in the outer MPC loop to control the productivity and product

quality attributes of interest. The vector of input variables, u, in Equa-

tion (1) contains agitation speed, DO, temperature, and the volume of

feed medium added to the reactor during each day of a run. By con-

trast to prior work (e.g., in reference 29), the concentrations of a few

medium supplements were modeled as input variables. While product

attributes can be improved by optimizing the medium recipe, medium

composition cannot be altered easily (if at all) during production.

Therefore, we eliminated medium recipe from consideration as a via-

ble manipulated variable. Bioreactor operating conditions (specifically,

agitation speed, DO, and temperature) along with feed amounts, on

the other hand, can be—and sometimes are—adjusted in real time dur-

ing a fed-batch run. For instance, temperature shifts (i.e., changing the

reactor temperature once during a fed-batch run) have been shown to

increase the final titer23,30; an appropriate amount of DO is required

to maintain culture growth and metabolism31; agitation rate is known

to affect glucose consumption rates and viable cell density (VCD)32;

feed rates determine the availability of nutrients, which affect cell

metabolism and proliferation.

For two related reasons, the process model used to design and

implement the outer-loop MPC was chosen to be a linearized approxi-

mation of f. First, the approximate linear model runs faster on a com-

puter than the original nonlinear model, without a significant loss in

prediction accuracy. Second, one of the characteristic benefits of

feedback control is an intrinsic ability to compensate robustly for pre-

diction errors arising from process/model mismatch. In addition,

because MPC is a discrete-time strategy, we employ a discrete-time

version of the model for the design and implementation of the outer-

loop controller.

For our specific production process, the model components are

as follows: the state variables—protein titer (CmAb), cell densities (VCD

and total cell density (TCD)), metabolite concentrations (CLac, CAmm,

and CGlc), and glycan distributions; the input variables—feed rates and

operating conditions. We did not include additional state variables—

for example, concentrations of amino acids and other metabolites—in

the process model as the objective was not to elucidate the underly-

ing biological mechanisms or create a digital twin of the process.

Instead, a model that contained commonly measured process vari-

ables was sufficient for illustrating MPC in this article. The linearized

discrete-time cell-culture model, fc, is shown in Equation (2):

xc kþ1ð Þ
¼ fc k;xc,u,V,Vfð Þ

¼ V kð Þ
V kð ÞþVf kð Þ Acxc kð ÞþBcu kð Þð Þþ Vf kð Þ

V kð ÞþVf kð Þxf ,
ð2Þ

where the vector xc kð Þ�ℝ6
≥0 ¼ CmAb,VCD,TCD,CLac,CAmm,CGlc½ � >

denotes the cell culture state variables at time point k (mAb, lactate,

ammonium, and glucose concentrations are in g/L; VCD and TCD are

in 106 cells/mL). One distinct feature of a fed-batch process is the

periodic and abrupt cell culture volume and concentration changes

due to feeding and, to a much lesser degree, sampling activities. The
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vector xf �ℝ6
≥0 denotes the concentrations of the same six cell culture

state variables in the feed medium, which contains no glycans, and

Vf kð Þ denotes the volume of feed added into the culture at time point

k. The cell-culture model has two parameter matrices. The matrix

Ac �ℝ6�6 is an autoregressive coefficient, which relates the state vari-

ables of a previous time step to the state variables of the next time

step. The matrix Bc �ℝ6�4 is an exogenous coefficient, which repre-

sents the effect of input variables on the state variables. The coeffi-

cients Ac and Bc were estimated by minimizing the model prediction

error, as explained in a later section.

The linearized discrete-time glycosylation model, fG, is shown in

Equation (3):

xg,0 kð Þ¼Agxc kð ÞþBgu kð Þ,
xg kð Þ¼ xg,0 kð Þ

1 > xg,0 kð Þ�100%,

xG kð Þ¼ fG 1,…,k;xc,xg ,Vð Þ¼
Pk
s¼1

xg sð Þ CmAb sð Þ�CmAb s�1ð Þð ÞV sð Þ
CmAb kð ÞV kð Þ ,

ð3Þ

where the vector xg,0 �ℝ4
≥0 ¼ CG0F,CG1F,CG2F,CAFuc½ � > denotes the

glycan concentrations (G0F, G1F, and G2F are three fucosylated gly-

can species measured in the experiments; AFuc represents all afuco-

sylated glycan species), the vector xg kð Þ�ℝ4
≥0 ¼ G0F%,G1F%,G2F%,½

AFuc%� > denotes the instantaneous glycan percentages of the anti-

bodies produced between time points k�1 and k, and the vector

xG kð Þ�ℝ4
≥0 denotes the cumulative glycan percentages of all the anti-

bodies in the reactor at time point k, calculated based on the antibody

titer, CmAb, and the working volume, V, values up to the time point k.

The glycosylation model also has two parameter matrices. The matrix

Ag �ℝ4�6 relates the cell-culture state variables to the glycosylation

state variables. The matrix Bg �ℝ4�4 represents the effect of input

variables on the glycosylation state variables.

The overall linearized discrete-time model, f, is shown in

Equation (4):

x kþ1ð Þ¼ f x kð Þ,u kð Þ;Ac,Bc,Ag ,Bg ,…ð Þ,

x kð Þ¼ y kð Þ¼
xc kð Þ
xG kð Þ

" #
,

ð4Þ

where the vector y that combines xc and xG denotes the process out-

put variables that can be measured (because every state variable is

measurable, the dimensions of the output vector, y, and the state vec-

tor, x, are identical).

We wrote all model simulation and MPC codes from scratch in

MATLAB 2019a (MathWorks, MA). No third-party MATLAB tools

were used.

3.3 | Bioreactor experiments

For the process in question (described shortly), we designed two

orthogonal experiments to generate data to train the process model.

Initially, we designed a 23�1
III fractional factorial experiment where agi-

tation, DO, and temperature were varied between low (�1) and high

þ1ð Þ levels shown in Table 1. Subsequently, we designed a 22 factorial

experiment to study two new factors—feed-to-volume ratio and feed-

ing frequency. See Table 1 for a full description of the components of

the two experimental designs and Figure 2 for the measurement data

of titer, viability, VCD, glucose, lactate, and ammonium from the

experiments.

The process on which the experiments were preformed used an

IgG1-producing CHOZN cell line (provided by AMBIC). Before each

bioreactor run, frozen cell stocks were thawed and added to vented-

cap Erlenmeyer shake flasks at a working volume of 30 mL. Cell cul-

tures were passaged every 3–4 days at a density of 3�105 cells/mL

in a proprietary AMBIC 1.1 media formulation,33 and were grown in a

shaking incubator, which was maintained at 5% CO2, 37�C, and

130 RPM. Subsequently, cells were inoculated at an initial VCD of

approximately 5�105 cells/mL into four 1-L bench-top Applikon bio-

reactors (Delft, Netherlands) at a working volume of 300mL. The set-

points of temperature, DO, and agitation rate were determined

according to the experimental designs in Table 1. pH was controlled

at 7.0 throughout the runs by the bioreactor's own inner- and middle-

loop controllers by manipulating the flow rates of CO2 gas and a 1 M

sodium bicarbonate solution (pH 8.5). Three peristaltic feeding pumps

were connected to one bottle of “AMBIC feed medium A,” one bottle

of “AMBIC feed medium B,” and one bottle of 200 g/L glucose solu-

tion.33 The bioreactors were sampled daily or every 2 days. VCD and

percentage viability were measured using a trypan blue exclusion

assay on an automated cell counter (Nexcelom Biosciences, MA).

Metabolite (glucose, lactate, galactose, and ammonia) concentrations

were measured using a CEDEX bioanalyzer instrument (Roche,

Germany). Glucose concentration was brought back to 5 g/L every

day by adding the requisite amount of 200 g/L glucose feed calculated

according to the measured glucose concentration before feeding.

Antibodies were purified from the supernatant of samples via

Protein A, and the antibody titer was determined by a BioLogic Duo-

flow medium pressure chromatography instrument (Bio-Rad, CA)

using a Protein-A column (Bio-Rad, CA).

4 | RESULTS AND DISCUSSION

4.1 | Parameter estimation

We estimated the parameters of the model in Equation (4) by mini-

mizing the sum of squared differences between the measurements

taken over T culture days and the corresponding model predictions

using the same objective function that was used for parameter esti-

mation in reference 29 and in the equation below. We trained the

model on all but the last two data points in each fed-batch run, which

were reserved for validating the model. The training was terminated

when the validation error reached its lowest value, indicating that a

further reduction in the training error would increase the risk of

overfitting.
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S¼
Xn
i¼1

XT
k¼1

w2
i yi kð Þ�byi kð Þð Þ2 ð5Þ

where S is the objective function to be minimized; w1,…,wn are the

weights chosen to scale the n variables and to assign higher priority to

variables of greater interest (e.g., titer); yi kð Þ is the ith variable mea-

sured at the kth time point; byi kð Þ is the corresponding model predic-

tion; T is the number of time points.

The estimated values for the model parameters—Ac,Bc,Ag , and

Bg—are listed in Table S4 in Supporting Information. For the specific

process in question, the inputs are agitation, DO, temperature, and

feed-volume-to-working-volume ratio; the cell culture state (and out-

put) variables are antibody concentration, VCD, TCD, lactate concen-

tration, ammonium concentration, and glucose concentration (viability

is an extra output variable calculated simply by dividing VCD by TCD);

the glycosylation state (and output) variables are the percentages of

antibodies glycosylated with G0F, G1F, G2F, and other afucosylated

glycans (AFuc). Figure 3 shows a comparison between the model pre-

diction and the measurement data for selected process and product

variables. The relatively low prediction accuracy under certain

TABLE 1 Experimental design used to generate data for model development.

Label Agitation (RPM) DO (%) Temperature (�C) Feed ratio (%) Feeding frequency

AF01–04 Study of agitation, DO, and temperature effects on process dynamics

AF01 100 40 37 3 Odd-day

AF02 110 60 34 3 Odd-day

AF03 120 40 34 3 Odd-day

AF04 120 60 37 3 Odd-day

FE01–04 Study of feeding effects on process dynamics

FE01 120 40 34 3 Odd-day

FE02 120 40 34 5 Odd-day

FE03 120 40 34 3 Daily

FE04 120 40 34 5 Daily

F IGURE 2 Measurement data from the experiments.
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experimental conditions can be attributed partly to the intrinsic batch-

to-batch variability commonly observed in cell culture processes. For

instance, even though reaction runs labeled AF03 and FE01 (see

Table 1 for the corresponding experimental design conditions) were

based on the same conditions, the resulting measurements differed

somewhat. Such biological variability is not unusual and cannot be

captured adequately by any mechanistic model. Within the context of

process control, these are rightly considered as unmodelled distur-

bances, which, as discussed previously, are routinely corrected for by

feedback control.

4.2 | Observability and controllability discussion

The model in Equation (4) is a linear time-invariant state-space model,

of which the standard observability matrix and controllability matrix

can be calculated easily.34 However, the practical challenges associ-

ated with state estimation and control of bioprocesses go beyond

merely calculating the observability and controllability matrices. In this

section, we discuss these challenges in general, and their implications

for designing effective bioprocess sensors and control systems

beyond the specific process at hand.

F IGURE 3 Regression plots of model prediction (y axis) versus measurement (x axis). The closer the data points align with the diagonal lines,
the more accurate the model predictions are. The root-mean-square errors are 0.30 g/L (titer), 0.78 � 106 cells/mL (VCD), 0.88 � 106 cells/mL
(TCD), 2.7% (viability), 1.5% (G0F), 1.2% (G1F), 0.56% (G2F), and 1.3% (AFuc).
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4.2.1 | Observability

Observability, an intrinsic characteristic of a system, indicates whether

the complete set of the system's internal state can be estimated from

the available measured outputs. In general, a system is observable if

all its state variables can be determined based on the measurements

of the system output and the control action taken. The ability to

determine accurately the entire system states allows us to predict the

complete future trajectory of the process, which in turn can be used

to calculate the optimal control action required to steer the process

states to their desired target values. For bioprocesses, because pro-

cess attributes such as CQAs are not measurable directly during pro-

duction, state estimation is particularly important for online tracking

of process attributes, to ensure that cells grow normally, and protein

synthesis follows desired specifications.

For the specific process discussed in this article, the state vari-

ables are concentrations of mAb, cells, ammonia, lactate, and glucose,

along with antibody galactosylation and fucosylation levels. The cell

culture and glycosylation states are denoted by vectors xc and xG,

respectively, in Equation (4). Similarly, yc and yG are the measured

external outputs. Equation (4) is an approximate linear model devel-

oped particularly to describe the dynamics of the measured state vari-

ables only; therefore, by design, yc ¼ xc, yG ¼ xG, and y¼ x. In a typical

fed-batch run, the cell culture state, xc, is fully available through at-line

measurements, from samples that are analyzed within minutes to

hours of drawing. However, as noted shortly, these measurements are

subject to noise, sometimes of magnitude too significant to ignore.

The glycans, on the other hand, are typically not measured during a

run but instead analyzed off-line after a run completes. Therefore,

these states cannot be estimated from such end-of-run measurements

during the run when the estimates are needed most. However,

because of the connection to the measurable culture states, it may be

possible to estimate some, or all of them, depending on the nature of

the glycosylation process in question. Consequently, state estimation

for the specific bioprocesses considered here involves (1) filtering pro-

cess and measurement noise, and (2) estimating the full glycan state

when only off-line or partial measurements are available.

For all practical processes, both model predictions and measure-

ments are subject to noise—the former due to unmeasured distur-

bances and unmodelled dynamics; the latter from natural variability

associated with all sensors. It is customary for modern implementa-

tions of MPC to employ a Kalman filter (Equation 6) to provide esti-

mates of the system states, using such process models as the one in

Equation (4). Equation (6) gives the general representation of a Kal-

man filter for a linear system with bx and y being the (estimated) state

and measurement vectors, respectively, f being the model, C being

the matrix that relates the state vector to the measurement vector,

and K being the Kalman gain.

bx kþ1ð Þ¼ f bx kð Þ,u kð Þ,…ð ÞþK y kð Þ�Cf bx kð Þ,u kð Þ,…ð Þð Þ: ð6Þ

From stochastic estimation theory,34 optimal state estimates

(in the least-squares sense) result from using the optimal Kalman gain,

K, an optimal combination of the covariance matrices of the measure-

ment noise and of the process (model) noise. In general, it is not

always easy to determine these covariance matrices objectively.

Under such circumstances, the elements of the Kalman gain matrix

are selected by the user as tuning parameters, with specific chosen

values influencing the performance of the Kalman filter. If neither

covariance matrix is available or easily determined, and all state vari-

ables are measured (i.e., C¼1 by design), as is the case with our spe-

cific example, the Kalman gain matrix becomes a square matrix.

Furthermore, in the absence of any objective reason to justify off-

diagonal terms, the Kalman gain matrix reduces to a diagonal matrix,

with individual scalar gains 0≤ κi ≤1, one for each state variable, xi.

Selecting values for each scalar may be guided by the following con-

siderations. When κi ¼0, the current measurements do not influence

the model prediction and hence, the estimated state will be identical

to the uncorrected model prediction of the state (i.e., the filter

operates in “open loop,” with no feedback correction from measure-

ments). When κi ¼1, the estimated state is overridden entirely by the

measurement. If additional information on the process noise and

the observation noise is available, one can adjust each κi accordingly.

In this work, we selected κi ¼ κ¼0:5 as a reasonable compromise

that is impartial toward either the model prediction or the measure-

ment. In this special case, the expression in Equation (6) is simplified

to the one given in Equation (7) with κ—a scalar—being the Kal-

man gain.

bx kþ1ð Þ¼ f bx kð Þ,u kð Þ,…ð Þþ κ x kð Þ� f bx kð Þ,u kð Þ,…ð Þð Þ: ð7Þ

When reliable online glycan measurements are unavailable during

a fed-batch run, the glycan state can only be predicted using either the

approximate linear model in Equation (4) or a full mechanistic/semi-

mechanistic model, such as the one in reference 27, without the bene-

fit of actual measurements to use in updating the estimates. However,

glycosylation occurs after antibodies are synthesized, at a much faster

rate than the rates of cell growth and metabolism. As a result, the gly-

cosylation state depends more heavily on the cell culture state

(e.g., cell density and titer determine the total amount of glycans) than

on the past glycosylation states alone. Consequently, the develop-

ment and implementation of useful “soft sensors” for glycans primar-

ily requires a reliable glycosylation model that can predict the glycan

distribution accurately from cell culture conditions.

4.2.2 | Controllability

Prior to designing the controller, we analyzed the controllability of our

process using the method developed by reference 22 to identify

which process outputs could be controlled using available manipu-

lated variables. For most, if not all, bioprocesses, the number of out-

puts to be controlled will almost always be greater than the number

of manipulated variables available for controlling them (particularly if

the objective involves controlling the distribution glycans of which

there are many species). Therefore, it is impossible to control all the

9 of 17 LUO ET AL.
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outputs because the system lacks sufficient degrees of freedom. Spe-

cific to our process, we aim to control glycan groups that represent

fucosylation, galactosylation, high mannose, or other structures

instead of controlling individual glycan species independently. Conse-

quently, we carried out a singular value decomposition (SVD) of the

process gain matrix to determine which part of the system could best

be controlled with the limited available degrees of freedom, and how

to implement control.

The process gain matrix, Kp, connects the process outputs to the

inputs, according to Equation (8), specifically indicating “by how

much” the vector of process outputs will change at the end of a run

(ΔyÞ, in response to a step change of Δu in the process inputs. The

values of the process gain matrix elements were determined from

data generated by using the experimental designs in Table 1 to change

the indicated inputs, while measuring the response in titer, cell den-

sity, and antibody glycosylation (galactosylation, fucosylation) as the

process outputs of interest. In interpreting the results of the data

analysis using ANOVA, to balance the risk of missing truly significant

gain values because of random noise against that of mistaking noise

for significance, we chose to err on the side of lowering the former

risk by selecting the threshold of statistical significance as α¼0:3, as

opposed to the traditional (but equally arbitrary) α¼0:05.

Δy¼KpΔu: ð8Þ

The resulting estimate of the 10-by-5 gain matrix, Kp is shown in

Table 2. An SVD of this matrix produced a rank-ordered list of output

modes (linear combinations of outputs) naturally connected to input

modes (linear combinations of inputs) with the associated singular

values as the gain between each input–output mode pair. Rank-

ordering the singular values in descending order from the largest to

the smallest allows a re-arrangement and sorting of the original pro-

cess variables into modes, from the most controllable mode (associ-

ated with the largest singular value) to the least controllable

(associated with the smallest singular value). The results, presented in

Figure 4, show the most controllable modes based on the largest

9 singular values of the process gain matrix (Figure 5), and the corre-

sponding input modes (Figure 6).

It is instructive to examine and interpret these results and the

insight they provide into the nature of the process in question and

how it might best be controlled.

1. The most controllable mode, η1, features primarily galactosylation,

fucosylation, and lactate concentration, with very little else

(Figure 4). This mode is connected by the highest singular value

(1.89) to input mode 1, μ1, consisting primarily of temperature,

feed rate, DO, and agitation. The implication is that galactosylation

and fucosylation are the most controllable product characteristics;

that they can be increased (or decreased) simultaneously, without

affecting titer and other product attributes much; and that such

control is best carried out by manipulating temperature, feed rate,

DO, and agitation.

2. The second most controllable mode, η2, primarily involves titer, cell

densities (VCD, TCD), with very little else; it is almost perfectly

complementary to the first mode, η1. This second mode is con-

nected by the second highest singular value (1.80) to input mode

2, μ2, which is dominated by feed frequency and not much else.

3. Such a decomposition into two virtually decoupled modes might

appear fortuitous; in fact, it is in perfect keeping with the intrinsic

structure of the process. Observe that the first mode is entirely

about product quality; the second is about productivity. Further-

more, the primary driver for controlling the second mode (feed fre-

quency) is also complementary to the primary drivers for the

control of the first mode.

The most significant practical implication of the results of this

theoretical modal analysis is that simultaneous control of the produc-

tivity attributes (titer and cell densities) and the product quality attri-

butes (glycan distributions) is not only feasible, but the means of

achieving such control have also been revealed.

The 3rd, 4th, and 5th largest singular values (1.18, 0.76, and

0.49)—nowhere as large as the first two—indicate that output mode

TABLE 2 Process gain matrix
estimated from the changes in process
inputs and process outputs (see
reference 22 for methodology).

Max titer 0.1605 �0.1326 0.1679 0.9506

Max VCD 1.084

TCD 1.078

Lactate 0.8319 0.7639 0.6781 0.3902

Ammonium �0.6282

Glucose �0.6738

G0F% �0.5519 0.4155

G1F% 0.5356 0.7882

G2F% 0.783

AFuc% �0.7813 �0.938

Agitation DO2 Temperature F1 added F1 frequency

Note: Here the rows correspond to the state variables, and the columns correspond to the inputs. The

state variables are scaled by their respective standard deviations, and the inputs are given the values �1

(low) or 1 (high).
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3 (dominated by AFuc and G0F), output mode 4 (dominated by G1F

and G2F) and to an even lesser extent, output mode 5 (dominated by

ammonia, lactate, AFuc and G2F), are weakly controllable by the cor-

responding input modes. All other modes from the 6th to the 9th are

practically uncontrollable, because of the negligible associated singular

values.

4.3 | Control system performance evaluation in
simulation

Prior to implementing a control system experimentally, it is custom-

ary (and wise) to evaluate the control system performance in simula-

tion first. In this case, recall that the complete control system

consists of three nested control loops—the inner loop, for base-level

regulatory control; the middle loop for control of process variables

such as agitation, DO, temperature, and pH; and the outer-loop

F IGURE 4 Loading plots of the most controllable modes of the system.

F IGURE 5 Singular values corresponding to the output modes.
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MPC for higher-level control of the productivity and product quality

attributes. Practically, however, for these bioprocesses we needed

only to simulate the outer-loop MPC system for the following pri-

mary reasons: (i) the natural response times of the lower-level com-

ponents of the bioprocess in question are of the order of seconds

and minutes; on the other hand, (ii) the natural response time of the

biological processes involved in product formation are much

longer—on the order of several hours to days. Consequently, (iii) the

MPC will not need to update its control action (the setpoints to the

middle-loop controllers) any more frequently than once a day, and

the lower-level processes will have reached steady state well before

any new setpoint changes from the MPC. For all intents and pur-

poses, therefore, the process to be simulated is a discrete dynamic

system with a sample period of 1 day, where the lower-level pro-

cesses behave like pure gain systems that achieve the desired set-

points in between samples with no noticeable dynamics.

(In practice, it will be important to tune the lower-level regulatory

controllers appropriately but the techniques for such tuning are

widely available and familiar to most practitioners).

As an optimization-based control technique, MPC is perfectly

suited for use in satisfying complex control objectives and for han-

dling constraints explicitly. Unlike PID control, MPC requires a process

model for state estimation and for prediction of future process behav-

ior, and the required control action is determined by solving optimiza-

tion problems recursively at each sample point, as the process

evolves.35 The MPC objective function, decision variables, and con-

straints are defined as follows. The objective function contains two

cost terms: (i) the cost of the state variables deviating from the set-

point and (ii) the cost of the exerted control action. At each sample

instance, the future state variables are simulated using the control

action and the process model developed previously in the article. Min-

imizing the former ensures that the production targets are met, and

minimizing the latter avoids taking overly aggressive control action in

meeting the targets. The sequence of changes in the manipulated vari-

able to be implemented as control actions constitute the decision vari-

ables. For our process, these decision variables are bounded by the

lower and upper levels shown in Table 1 because the model was

trained using data from experiments confined to such an input space.

The optimization problem involved minimizing the objective function,

J, as defined by Equation (9):

J¼
XT
k¼1

y kð Þ�ysp kð Þ�� ��2
Q
þ
XT�1

k¼1

u kð Þ�u k�1ð Þk k2S , ð9Þ

where ysp kð Þ represents the vector of reference setpoint outputs, that

is, the desired vector of outputs for the kth day; Q, and S represent

the weighing matrices that penalize deviations from the reference

outputs, and changes in control action, respectively. The implementa-

tion of an MPC in a batch or fed-batch process is different from that

of a continuous process. For example, Nagy and Braatz36 and Brad-

ford and Imsland37 used a shrinking horizon MPC to control batch

processes.

To evaluate the controller performance under realistic conditions,

we introduced two features:

F IGURE 6 Input modes
corresponding to the output modes.
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1. Plant/Model Mismatch: We used the model presented earlier as the

“plant model” (to represent the “true process”) but used a different

variation, having the same form but with different parameter

values, to determine control action. This second model (or the

“controller model”) was obtained by replacing some of the parame-

ters of the “plant model” with different values, which are listed in

Table S5 in Supporting Information. We generated the “controller
model” by relaxing the termination criteria of the optimization

solver used in parameter estimation. As a result, the goodness of

fit of the “controller model” is slightly worse than that of the “plant
model.”

2. Measurement Noise: Two zero-mean random variables with a small

standard deviation 0:05�106
�

cells/mL) were added to the two

cell density outputs to simulate the effect of measurement noise

of the ViCell instrument. This choice is for the practical reason that

cell density measurements using trypan blue are subject to higher

levels of uncertainties than other at-line measurements such as

titer.

We tested the MPC under two different scenarios where in

Scenario 1, only titer and viability were controlled, and in Scenario

2, in addition to titer and viability, the level of fucosylation

(or AFuc) was also controlled. In each scenario, the “plant model”
was used to simulate the controlled process, and the MPC deter-

mined the optimal control actions for each day by solving an optimi-

zation problem using the “controller model” and adjusting its

estimated process state based on the measurement feedback from

the simulated process. In Table 3, the first row represents the final

titer and AFuc levels that were calculated from simulating the FE02

condition (Table 1) without the MPC being active. The second and

the third row represent the final titer and AFuc setpoints given to

the MPC in Scenario 1 and Scenario 2.

4.3.1 | Scenario 1

In Scenario 1, we controlled the final titer on Day 13 at 2.5 g/L and

maintained viability above 75% throughout the process. The titer set-

point trajectory was defined as a sigmoid that increases gradually

from 50% (Day 0) to nearly 100% (end of run) of the desired final titer.

To maintain viability above 75%, we specified a target for viability at

TABLE 3 Summary of the final titer and AFuc levels under
different conditions.

Final titer (g/L) Final afucosylation

FE02 (simulation) 2.1 11.5%

Scenario 1 (setpoint) 2.5 –

Scenario 2 (setpoint) 2.5 12%

F IGURE 7 Time series of selected process and product variables under the FE02 condition (solid lines) and in Scenario 1 controlled by the
MPC (triangles), and sigmoidal titer setpoint trajectory (dashed line).
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F IGURE 8 Time series of the operating conditions and the volume of feed added in Scenario 1 controlled by the MPC (solid lines), and the
lower and upper bounds (dashed lines).

F IGURE 9 Time series of selected process and product variables under the FE02 condition (solid lines) and in Scenario 2 controlled by the
MPC (triangles), sigmoidal titer setpoint trajectory (dashed line), and sigmoidal AFuc setpoint trajectory (dashed line).
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75%, and the first cost term in Equation (9) associated with viability

becomes positive only when viability drops below 75%. In other

words, the objective function does not penalize viability between

75% and 100%.

Figure 7 shows the time series of titer, viability, VCD, TCD, and

AFuc levels in Scenario 1 and, for comparison, the process simulation

based on the FE02 condition, without MPC. Figure 8 shows the times

series of agitation, temperature, DO, and the volume of feed added.

Although both VCD and TCD climbed steadily between Day 0 and

Day 6, there was a drop in viability in the initial days, attributed

potentially to the absence of feeding prior to Day 3. Between Day

1 and Day 4, titer increased at a slower rate than that of VCD.

Between Day 4 and Day 13, when cells shifted metabolically from

proliferation to production, the climb of VCD slowed down while the

climb of titer accelerated. At the end of the run, the titer was close to

the setpoint of 2.5 g/L. Note that the setpoint trajectory (dashed line)

for the MPC is a sigmoid curve created artificially that reaches the

2.5 g/L final titer target. It is expected that the controlled process

does not track the setpoint trajectory perfectly. Compared with the

FE02 process, the controlled process used a slightly larger volume of

the nutrient feed, and the feeding frequency was higher (which is con-

sistent with the controllability analysis results in Figure 6 where feed-

ing frequency is a prominent component of the input mode associated

mostly with controlling product titer). Compared with the operating

conditions of the FE02 process, agitation was lower between Day

7 and Day 13, temperature was higher between Day 0 and Day 2, and

DO was higher between Day 4 and Day 9.

4.3.2 | Scenario 2

The fucosylation level of the antibodies is critical in improving the

antibody dependent cell cytotoxicity (ADCC).21 In Scenario 2, we con-

trolled the final titer on Day 13 at 2.5 g/L, maintained viability above

75%, and controlled the final afucosylation level on Day 13 at 12%.

The afucosylation setpoint trajectory was defined as a sigmoid that

begins at the average afucosylation among all initial measurements in

the reference experiment and ends at the desired final target.

Figure 9 shows the time series of titer, viability, VCD, TCD, and

AFuc levels in Scenario 2, and Figure 10 shows the times series of agi-

tation, temperature, DO, and the volume of feed added. There was a

steady rise in titer after Day 4 and the titer reached its final target of

2.5 g/L on Day 13. The AFuc level surpassed its target of 12% and

overshot to 12.5% at the end of the run. While the feeding profiles

appeared similar in both scenarios, temperature and DO profiles were

substantially different. This finding is consistent with the controllabil-

ity analysis results in Figure 6 where temperature and DO are promi-

nent components of the input mode associated mostly with

controlling product glycosylation attributes. We demonstrated in the

results in Scenario 1 and Scenario 2 that it is possible to control the

F IGURE 10 Time series of the operating conditions and the volume of feed added in Scenario 2 controlled by the MPC (solid lines), and the
lower and upper bounds (dashed lines).
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productivity and glycosylation attributes (independently) using

the available input variables to achieve the desired production targets

for this process. Note that the demonstration was performed under a

limited amount of data and two specific control scenarios. Given the

inherent variability of bioprocesses, how robust this control system is

against disturbances and severe process/model mismatch is worth

further investigation.

5 | SUMMARY AND CONCLUSIONS

In this article, we reviewed the challenges associated with controlling

fed-batch mAb manufacturing processes and presented a case for

model-based control of bioprocess productivity and product quality

attributes, with a particular emphasis on controlling mAb product titer,

viability, and glycosylation levels. We discussed the defining charac-

teristics of these bioprocesses, the challenges they pose to effective

bioprocess control, and then present a control scheme whose struc-

ture is dictated by the defining characteristics of these bioprocesses,

and whose components are designed to address the noted challenges.

The proposed control scheme was evaluated in MATLAB simulations,

by design, reserving a detailed discussion of our implementation on a

laboratory-scale reactor in the follow-up paper.

The results in this article show how controllability analysis provides

unparalleled insight into mAb manufacturing processes, indicating what

aspects of the process can be controlled, how well one can expect to be

able to control them, and most importantly, how best to achieve such

control along with which manipulated variables will be most effective.

Our simulation results indicate that with MPC, even in the presence

of some modest process/model mismatch, the control system can meet

productivity and product quality targets simultaneously, compared with

the baseline process (FE02) performance without control. The ultimate

test of the proposed model-based control scheme is how it performs

experimentally on an actual process. We present in the follow-up paper

the key challenges to practical implementation using a lab-scale biopro-

cess and discuss the results of the control system performance.

The lack of inline or online sensing will continue to constitute

impediments to the realization of the full benefits of advanced control

systems for bioprocesses that will be on par with what one routinely

obtains for chemical processes. Some of the disadvantages of off-line

measurements acquired via periodic manual sampling include the

amount of time and labor they require, high operating cost, and loss of

materials due to sampling (from both the sample volume and the dead

volume). Even though addressing these challenges lies outside the

intended scope of this article, we note in conclusion that the proposed

scheme is applicable to and will work just as well (perhaps even better)

with advanced inline or online sensing technologies, such as Raman

spectroscopy, when they become routine components of bioprocesses.
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