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Modern financial systems are 
characterized by a very com-
plex set of interdependencies 
among a large number of 

institutions. Stress to one part of the system 
can spread to others, often threatening the 
stability of the entire financial system. The 
recent financial crisis that was precipitated 
by counterparty exposures revealed by the 
Lehman bankruptcy, the near bankruptcy of 
AIG, and the European debt crisis that was 
caused by the exposure of European banks to 
sovereign default risk emphasizes the critical 
need for a fundamental understanding of the 
structure and dynamics of this system. In the 
aftermath of the 2008 crisis, regulators have 
come to recognize that interconnectedness 
can pose substantial threats to the stability of 
the financial system.1

Financial instability typically results 
from positive feedback loops that are intrinsic 
to the operation of the financial system, that 
is, the instability results from responses to 
shocks that reinforce and amplify the ini-
tial shock. The structures and mechanisms 
that create these positive feedbacks must, 
therefore, be the focus of any analysis of 
financial stability, and new tools are needed 
to identify and model these structures and 
mechanisms.

Furthermore, financial systems have the 
particular feature that the steps taken by a 
single agent to mitigate its risk, under extreme 

circumstances, can become the very source 
of destabilizing positive feedback through 
the interaction of multiple agents. We refer 
to these steps as locally stabilizing yet globally 
destabilizing. This phenomenon is illustrated 
by the phenomenon of the bank run. Sup-
pose a bank is weakened by losses, the pru-
dent action for each individual depositor is to 
withdraw funds; yet this very response will 
drive the bank to failure if followed by every 
depositor (Diamond and Dybvig [1983]). The 
longer the line of customers outside grows, 
the greater the incentive for more customers 
to join the line and the stronger the ampli-
fying feedback.

The problem of traditional bank runs 
was largely solved through deposit insurance, 
which effectively eliminates any reason for 
depositors to react to news about a bank. 
Yet similar dynamics operate throughout the 
financial system. For example, a bank/dealer 
facing a shortfall in funding might reduce 
the lending it provides to hedge funds, and 
to control their risk the hedge funds might 
respond by liquidating positions. But this cir-
cuit of actions, reasonable and prudent for 
each of the two sectors, can lead to global 
instability: the resulting decline in prices 
reduces the value of collateral, reducing the 
cash provided to the bank/dealer on one 
hand, and leading to further margin calls and 
demand for forced liquidation by the hedge 
funds on the other.
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Examples of these patterns have been identified as 
fire sale dynamics (Shleifer and Vishny [2010]), liquidity 
spirals (Brunnermeier and Pedersen [2009]), leverage 
cycles (Adrian and Shin [2013], and Fostel and Geana-
koplos [2008]), and panics (Gorton [2009]). But to 
understand these critical aspects of the financial system 
comprehensively, we need a systematic way to identify 
the paths of feedback globally, wherever they may arise. 
In order to do so, one must understand the conduits for 
the transmission of information and the control mecha-
nisms applied by the various financial entities based on 
their observations of f lows and the financial environ-
ment. A further complicating fact is that the nature of 
this feedback is scale dependent. For example, a small 
change in prices, funding, or a bank’s financial condition 
might be absorbed by the system, whereas a large shock 
might trigger a destabilizing cascade.

We introduce signed directed graphs (SDGs) as a 
tool for understanding the feedback effects in financial 
systems. SDGs are extensively used in process systems 
engineering. An SDG representation captures the infor-
mation transmission, the environmental state, and the 
causal relationships that underlie feedback. It encodes 
the control rules and responses followed by individual 
units within a financial system and provides a framework 
for systematically investigating the resulting interactions 
between these units. In particular, the SDG representa-
tion can be used to identify cycles of positive feedback 
that may not be immediately apparent. Moreover, sub-
jecting SDG to a process hazard analysis (PHA) (Ven-
katasubramanian et al. [2000] and Venkatasubramanian 
[2011]) pinpoints areas of potential stress and instability 
in a systematic manner.

The SDG framework is able to represent and reveal 
information missed by more traditional network models 
of financial interconnections. Network models typically 
describe payment obligations and f lows, and they can 
be effective in quantifying the degree and complexity 
of the connections among the financial entities. Stan-
dard network models represent f inancial entities as 
nodes and the f lows between them as edges; research 
questions in this area focus on which types of networks 
provide robust structures for the financial system (Allen 
and Babus [2009], Battiston et al. [2013], and Gai and 
Kapadia [2010]). But these models lack a representation 
for the f low of information and responses to informa-
tion; they do not provide a vehicle for understanding 
how responses and controls of multiple agents interact 

or the inner workings of an institution summarized by 
a single node.

In engineering systems, the safety and stability of 
an assembled system is a design criterion. In contrast, the 
financial system is self-organized. Individual financial 
entities generally have risk-management procedures and 
controls to preserve their own stability, but the system 
as a whole was never engineered for safety and stability. 
Because of this, it is all the more critical to understand 
the paths of positive and negative feedback, alternative 
routes for funding, and securities f lows in the event of 
a shock to one node or edge of the network, and more 
generally how the interactions of the system can create 
vulnerabilities and instability.

This article shows how the SDG framework makes 
this possible through a systemwide view of transforma-
tions and dynamical interactions in the financial system. 
With an SDG representation, it becomes possible to 
automate the systematic identification and monitoring of 
vulnerabilities. In particular, this approach contributes to 
the critical task of systemic financial risk management: 
it can highlight and help us monitor dynamics such as 
fire sales and funding runs where actions that are locally 
stabilizing might cascade to be globally destabilizing.

FINANCIAL NETWORK AS A PROCESS 
PLANT: A SYSTEMS ENGINEERING 
FRAMEWORK

An appropriate process systems engineering 
analogy is to view each financial entity as a production 
or manufacturing plant, for example, a chemical process 
plant, that takes securities and funding as inputs and 
creates new financial products as outputs that are deliv-
ered to other processing units. This analogy opens the 
possibility of using tools that are applied in engineering 
for network analysis to gain a better understanding of 
the dynamic process underlying the financial system. 
Though researchers have suggested the Internet, elec-
trical power grid, and transportation network as poten-
tial models for the financial system, none of these has 
the richness of phenomena seen in a large-scale chem-
ical process plant. We demonstrate in this article that 
phenomena such as various physical or chemical trans-
formations, feedback and recycle loops, and so on can 
serve as relevant and useful analogies for modeling the 
financial system. In the existing network-based models, 
risk travels along edges; however, these models ignore 
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the financial transformations executed within the nodes 
that generate and compound risk. Although f lows and 
connections are important, the picture of risk creation 
and contagion is incomplete without understanding the 
production process.

In order to gain further insight into the underlying 
dynamics, one needs a richer, more detailed, modeling 
framework (Venkatasubramanian et al. [2000] and Ven-
katasubramanian [2009]). This is carried out in pro-
cess systems engineering at three levels of increasing 
sophistication and effort: 1) qualitative causal models, 
such as SDGs, capture the underlying cause-and-effect 
relationships, 2) quantitative steady-state models, rep-
resented as a system of algebraic equations, capture the 
steady-state behavior of the process, and 3) quantita-
tive dynamic models, generally represented as a system 
of ordinary or partial differential equations (ODEs or 
PDEs), predict the transient behavior of the process. The 
particular choice for the model depends on the need. For 
instance, for performing PHA, where one systemati-
cally identifies the potential hazards, their causes, and 
adverse consequences, it is often adequate to use the 
qualitative causal SDG models. On the other hand, for 

making process control decisions, one requires a detailed 
dynamic model that is derived from first principles (as 
ODEs or PDEs) or from a data-driven perspective as 
an input-output model. Generally speaking, in many 
industrial settings, given the complexity of the under-
lying process, it is often quite difficult or expensive to 
develop the quantitative dynamic models, particularly 
from first principles.

We now illustrate the SDG framework with the 
aid of a simple process engineering example, a contin-
uous stirred-tank reactor (CSTR) process (see Exhibit 1 
and Stephanopoulos [1984]) where an exothermic (that 
is, heat generating) reaction, A → B, takes place. The 
heat generated by the reaction is removed by passing 
a coolant through the jacket of the reactor (shaded), 
thereby controlling the temperature T inside the reactor. 
If the temperature is not controlled, it could lead to 
a runaway reaction and explosion. The temperature is 
controlled by a feedback control loop that manipulates 
the coolant f low rate F

c
 to achieve the desired set point 

temperature.
We next build an SDG model for the CSTR pro-

cess. A digraph is a graph with directed arcs between the 

E X H I B I T  1
CSTR Example (adapted from Stephanopoulos [1984], Fig. 23.5c)
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nodes, and a signed directed graph (SDG) is a graph in 
which the directed arcs have a positive (shown as solid 
lines) or negative sign (shown as dotted lines) attached 
to them. The nodes represent events or variables and 
edges relationship between the nodes. The directed 
arcs lead from the cause nodes to effect nodes, showing 
the direction of causality. In the typical use of SDG 
models, each node corresponds to a deviation from the 
steady-state value of a variable. SDG models are much 
more compact than truth tables, decision tables, or finite 
state models, and are, therefore, quite efficient in cap-
turing the causes and effects represented in a process 
or equipment. The qualitative SDG models are easier 
to develop and analyze, in comparison to the dynamic 
models, and can yield quick and useful results in certain 
decision-making tasks such as process fault diagnosis 
and process hazards analysis (Venkatasubramanian et al. 
[2000], Venkatasubramanian and Vaidhyanathan [1994], 
Vaidhyanathan and Venkatasubramanian [1996], Srini-
vasan and Venkatasubramanian [1998a, 1998b], Maurya 
et al. [2003a, 2003b], Maurya et al. [2004], and Zhao 
et al. [2005a, 2005b]). Even when a dynamic model is 
available, it is generally faster and more efficient to use 
an SDG model to perform cause-and-effect reasoning 
for such applications. However, since SDG models are 
qualitative in nature, they can lead to ambiguities and 
hence are limited to certain kinds of tasks (Venkatasu-
bramanian et al. [2003a, 2003b, 2003c]).

The SDG model for the CSTR example is shown 
in Exhibit 2. The figure is read as follows: a change in 
the inlet concentration of A, C

Ai
 positively affects the 

concentration of A inside the reactor, C
A
; that is, if 

C
Ai

 increases, C
A
 will increase, and if C

Ai
 decreases, C

A
 

will decrease. This is shown by the solid edge between 

these two nodes. And if C
A
 increases, then the reaction 

rate r will increase, which is shown by the solid edge 
between these two nodes. However, an increase in the 
reaction rate will increase the conversion of A → B, 
thereby reducing the concentration of A (a negative 
feedback here). This is captured by the negative edge 
in dotted line between r and C

A
. An increase in the 

reaction rate r results an increase in T, which in turn 
causes an increase in r, potentially leading to a runaway 
reaction if the coolant f low fails to control this. The 
rest of the SDG is to be interpreted by following the 
direction of causality, as shown earlier. Maurya et al. 
[2003a, 2003b, 2004] discuss how the SDG model can 
be derived systematically from the underlying equations 
of the process or from a detailed causal understanding 
of the process.

Although the SDG model of the entire process unit 
network (that is, f lowsheet) for an industrial process is 
naturally more complicated, with hundreds of nodes 
and edges, it can be assembled from a library of unit-
wise SDG models, as discussed by Maurya et al. [2003a, 
2003b, 2004]. Venkatasubramanian and coworkers have 
also developed artificial intelligence-based systems that 
automate much of the cause-and-effect reasoning (both 
diagnostic and prognostic) using SDG models for entire 
f lowsheets with recycle and control loops (Venkata-
subramanian et al. [2000], Venkatasubramanian and 
Vaidhyanathan [1994], Vaidhyanathan and Venkata-
subramanian [1996], Srinivasan and Venkatasubrama-
nian [1998a, 1998b], and Maurya et al. [2003a, 2003b, 
2004]) for process fault diagnosis and process hazards 
analysis applications. These methods can be adapted for 
developing a process systems engineering framework 
for modeling and analyzing risk in financial networks. 
We can develop automated systems that can identify the 
potential hazards lurking in a complex financial net-
work by systematically examining various what if failure 
scenarios.

SDG MODELING FRAMEWORK 
FOR FINANCIAL NETWORKS

We now explain how SDG models can be used 
to analyze the dynamics of financial systems. A bank/
dealer acts as an intermediary between buyers and 
sellers of securities, and between lenders and borrowers 
of funding. Its clients are investors, such as asset-
 management firms, hedge funds, and pension funds, as 

E X H I B I T  2
SDG for the CSTR Example (exothermic 
reaction A → B)

T
he

 J
ou

rn
al

 o
f 

In
ve

st
in

g 
20

15
.2

4.
2:

14
7-

16
2.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.ii

jo
ur

na
ls

.c
om

 b
y 

Y
u 

L
uo

 o
n 

06
/0

2/
15

.
It

 is
 il

le
ga

l t
o 

m
ak

e 
un

au
th

or
iz

ed
 c

op
ie

s 
of

 th
is

 a
rt

ic
le

, f
or

w
ar

d 
to

 a
n 

un
au

th
or

iz
ed

 u
se

r 
or

 to
 p

os
t e

le
ct

ro
ni

ca
lly

 w
ith

ou
t P

ub
lis

he
r 

pe
rm

is
si

on
.



THE JOURNAL OF INVESTING   151SUMMER 2015

well as other bank/dealers. There are specific business 
units within the bank/dealer that process funding and 
securities to create products for these clients. The bank/
dealer’s network, with its connections with other finan-
cial entities and among its business units, is complex. 
For the sake of simplicity, to demonstrate the process 
systems engineering inspired modeling framework, we 
now consider a simplified version of the reality and focus 
only on two types of bank/dealer activities shown in 
Exhibit 3:

1. Funding and securities lending: The bank/dealer 
goes to sources of funding such as money market 
funds through the repo market, and to security 
lenders, such as pension funds and asset-manage-
ment firms through their custodian banks.

2. Providing liquidity as a market maker: The bank/
dealer goes to the asset markets, to institutions that 
hold assets, and to other market makers to acquire 

positions in the securities that the clients demand. 
This function also includes securitization taking 
securities and restructuring them. This involves 
liquidity and risk transformations.

The functions we show within the bank/dealer 
include the prime broker, which lends cash to hedge 
funds in order for the hedge funds to buy securities 
on margin; the finance desk, which borrows cash with 
high-quality securities used as collateral; and the trading 
desk, which manages inventory in its market-making 
activities that it f inances through the f inance desk. 
The bank/dealer interacts with cash providers, such 
as money market funds, pension funds, and insurance 
companies; other banks/dealers through the over-the-
counter market, which is the market for the bank/dealer 
to acquire or lay off inventory; and the hedge funds, 
which, as noted earlier, seek leverage and securities from 
prime brokers to support their long/short trading posi-

E X H I B I T  3
Simplified Bank/Dealer Network
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tions. The hedge funds also represent the wider swath of 
institutional customers that use the bank/dealer’s mar-
ket-making function, ranging from asset managers and 
hedge funds to pension funds, sovereign wealth funds, 
and insurance companies.

The interactions between the bank/dealer’s func-
tional areas create various f inancial transformations. 
The finance desk takes short-term loans from the cash 
providers and passes them through to clients that have 
lower credit standing, often as longer-term loans. In 
doing this, the bank/dealer is engaging in both a matu-
rity and a credit transformation. The trading desk inven-
tories securities until it can either lay them off based 
on the demand of another client or to the over-the-
counter market. In doing this, it provides a liquidity 
transformation.

The network for the bank/dealer is more inter-
connected than that of a chemical plant, because some 
clients, that is, nodes that receive the output from a 
bank/dealer, are also sources of inputs. A hedge fund 
that is borrowing in order to buy securities might also be 
lending other securities. A pension fund that is providing 
funding might also be using the bank/dealer for market 
making. Hedge funds and related institutional investors 
are on both sides of the production in that they are both 
buyers and sellers of securities, and in that sense provide 
inputs as well as output in market making.

BANK/DEALER CASE STUDY

The network depicted in Exhibit 3, though illus-
trative of the layout of the components of the bank/
dealer and its interactions, does not represent the effect 
of the various f lows, and therefore cannot by itself sug-
gest conditions and areas where a disruption will create 
instability through positive feedback cycles. To achieve 
this, we need a cause-and-effect representation of this 
network, as we did in the chemical processing example 
of the previous section. We accomplish this by creating 
the SDG model for this network that is displayed in 
Exhibit 4.

For simplicity, we consider a system with a single 
market asset (for example, a stock or a bond). Its price is 
represented by the node P

BDM
, and this price level inf lu-

ences and is inf luenced by the rest of the system. Quanti-
ties of the asset Q

HF
 and Q

TD
 are held by the hedge fund 

and trading desk, respectively. These units need funding 
to finance their asset holdings; this funding is provided 

by the money market, the prime broker, and the finance 
desk. In each case, funding availability depends on the 
unit’s collateral level, and collateral is held in the form 
of the market asset. Thus, changes in the market price 
change the value of the collateral, which in turn changes 
the level of funding available. A margin rate controls 
the ratio of funding capacity to collateral at the money 
market and the prime broker; a leverage target con-
trols the level of borrowing relative to asset holdings at 
the hedge fund and the trading desk. More specifically, 
the hedge fund determines its dollar borrowing based 
on the availability of loans that are provided through 
the prime broker and a comparison of its assets to its 
target leverage ratio, λ

HF
. The prime broker’s lending 

is determined by the bank/dealer’s finance desk and by 
the prime broker’s margin rate, χ

PB
.

The trading desk provides a market-making func-
tion; it stands ready to take on any quantity sent its 
way by the hedge fund. This increases its inventory of 
shares, and when this inventory becomes too large rela-
tive to a set point, it opens the overf low control to pass 
shares through to the market, dropping the price as a 
result. The trading desk’s market-making function dis-
tinguishes its control mechanism from that of the hedge 
fund. As with the hedge fund, the trading desk depends 
on the finance desk to fund its inventory, and a drop 
in funding might force the trading desk to release more 
shares into the bank/dealer market.

The money market provides funding for both the 
hedge fund and the trading desk through the finance desk, 
and it is changes in the funding of the funding desk that 
lead to changes in the quantity held by the hedge fund 
and the trading unit, ultimately changing the price.

The entire system is driven by, and feeds back into, 
the prices that are set in the bank/dealer market. These 
prices are determined by the actions of the trading desk 
and the hedge fund and determine the collateral value 
that helps drive the willingness of the various agents 
along the path to provide funding.

The SDG model clearly illustrates why the financial 
system becomes embroiled in one crisis after another: 
nearly all of the pathways extending from the money 
market through the bank/dealers to the hedge funds are 
positive. Thus a shock to one node may create a positive 
feedback, exacerbating the shock. This can be seen by 
applying the SDG framework and its associated process 
hazard analysis methodology to the two most common 
sources of a financial crisis: funding runs and fire sales.

T
he

 J
ou

rn
al

 o
f 

In
ve

st
in

g 
20

15
.2

4.
2:

14
7-

16
2.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.ii

jo
ur

na
ls

.c
om

 b
y 

Y
u 

L
uo

 o
n 

06
/0

2/
15

.
It

 is
 il

le
ga

l t
o 

m
ak

e 
un

au
th

or
iz

ed
 c

op
ie

s 
of

 th
is

 a
rt

ic
le

, f
or

w
ar

d 
to

 a
n 

un
au

th
or

iz
ed

 u
se

r 
or

 to
 p

os
t e

le
ct

ro
ni

ca
lly

 w
ith

ou
t P

ub
lis

he
r 

pe
rm

is
si

on
.



THE JOURNAL OF INVESTING   153SUMMER 2015

Process hazards analysis (Venkatasubramanian 
et al. [2000], Venkatasubramanian [2011], and Zhao 
et al. [2005a, 2005b]) is a methodology for systematically 
identifying abnormal causes and adverse consequences 
that can occur anywhere in the process system. In the 
context of an SDG model, PHA provides the framework 
that can guide us in identifying methodically what can 
go wrong at each node and edge and how that failure 
would propagate through the rest of the system. Using 
this framework, we can identify and examine the com-
plete list of loops in an SDG model. This list can be 
computed via a depth-first search of the SDG (Russell 
and Norvig [1995]). Not all positive loops are necessarily 
significant sources of vulnerability, because the edges of 
the SDG record the direction of inf luence but not its 
magnitude. An individual node is typically subject to 
multiple competing effects, so the net effect ultimately 
depends on the gain associated with each feedback loop. 

Nevertheless, the list of loops provides a valuable tool 
for identifying vulnerabilities; indeed, we know of no 
other systematic approach to this problem.

Exhibit 5 gives a complete list of loops for the 
SDG model of the bank/dealer network, with each row 
describing a loop. A positive (negative) loop is one in 
which the product of the signs along the edges defining 
the loop is positive (negative). Only the last two loops in 
the table are negative, and these have a simple interpreta-
tion: they are the internal risk-management processes of 
the hedge fund and the trading desk, respectively. Each 
of these units uses a leverage target as an internal con-
trol for the quantity held of the market asset. However, 
when we combine these stabilizing negative feedback 
loops with the rest of financial system, we get a range of 
potentially destabilizing positive feedback loops through 
the interactions across units. We will examine two types 
of positive loops in greater detail, because these  represent 

E X H I B I T  4
SDG Model for Bank/Dealer Example
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fire sales and funding runs, two key examples of crisis 
dynamics. We emphasize that these dynamics are dis-
covered automatically by the SDG analysis, which high-
lights the value of this approach.

FIRE SALES

Exhibit 6 shows a segment of the SDG model of 
Exhibit 4 that focuses on the interaction of the hedge 
fund with the bank/dealer’s prime broker. The f ire 
sale occurs when there is a disruption to the system 
that forces a hedge fund to sell positions. As shown in 
Exhibit 6, this disruption can occur through three chan-
nels: a price drop and resulting drop in asset value, an 
increase in the margin rate that leads to a margin call 
from the prime broker, or a drop in the loan capacity of 
the prime broker. As the hedge fund reduces its assets, 
prices drop, again leading to a second (and subsequent) 
round of feedback making the situation worse in every 
subsequent iteration.

The fire sale is best depicted by the two loops listed 
in Exhibit 7. The first of these loops shows a price shock 
increasing the leverage of the hedge fund. The hedge fund 
then reduces its holdings in order to reduce its leverage, 
and this drops prices. The second loop has the same effect, 
a drop in prices increases leverage, which in turn leads 
to a drop in the quantity held by the hedge fund, but the 

effect in this case works its way through the trading desk. 
The quantity sold by the hedge fund raises the quantity 
held by the trading desk, increasing its λ

TD
. This in turn 

leads the trading unit to sell into the market, with the 
end result again being a further drop in prices.

Note that each of the units is acting to maintain 
stability: the prime broker is keeping its loans within 
bounds given its collateral, the hedge fund is main-
taining a target level of leverage to control its risk, and 
the trading desk is governing its inventory level through 
an outf low if its market-making activities increases its 
inventory above a target level. Yet the stabilizing activi-
ties at the local level still lead to instability at the global 
level. This underscores a central point in the functioning 
of the financial system, namely, that it can exhibit global 
instability even in the face of each unit acting to control 
its risk.

FUNDING RUNS

Exhibit 8 shows another segment of Exhibit 4, 
focusing on the interaction of the bank/dealer with the 
money market. A funding run can be triggered by a dis-
ruption in funding f lows from the money market. This 
may happen if there is an increased uncertainty about the 
quality of the collateral, or a drop in the market value of 
collateral, or by a change in the money market’s margin 

E X H I B I T  5
List of Loops
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rate, which might occur due to an erosion of confidence. 
The drop in funding negatively affects the amount of 
inventory the trading desk can carry, and as a result it 
sells into the market. As in case with dynamics associated 
with fire sales, selling drops prices, which feeds back 
to the value of collateral, and can precipitate a further 
reduction in funding from the money market.

The funding run is demonstrated by the two loops 
in Exhibit 9 that focus on the effect of a price drop 
on the collateral held by the money market. The price 
shock drops the value of the collateral being held by 
the money market, which reduces the funding avail-
able to the bank/dealer’s f inance desk. This has two 

effects. In Loop 2, it feeds through to ultimately reduce 
the funding available to the hedge fund through the 
prime broker, forcing a reduction in quantity held, and 
thereby further reducing price. In Loop 9, the reduction 
in funding from the money market reduces the funding 
available to the trading desk, and its reduction in inven-
tory again leads to a further price drop. These are only 
two of the possible loops where a drop in price-induced 
drop in funding leads to asset sales and subsequent price 
drops. For example, the drop in collateral value can 
affect the finance desk directly.

In both fire sales and funding runs, the SDG model 
identifies a critical dynamic that leads to market crises: 
actions that dampen risk on a local level can contribute 
positive feedback and cascades on the global level. The 
proper response for the prime broker when faced with a 
reduction in funding is to reduce funding to the hedge 
funds. But this leads to actions by the hedge funds that 
contribute to a positive feedback cycle that reduces 
funding for the prime broker even further. Similarly, a 

E X H I B I T  7
Fire Sale Loops

E X H I B I T  6
SDG Model for Bank/Dealer Fire Sale Example
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locally proper response for the trading desk in the face 
of lower funding is to reduce inventories, but this leads 
to a drop in prices that feeds back to affect the value of 
collateral, and thereby reduces funding even further.

The unintended consequences are even more wide-
spread than this. There are links between the segments 
representing fire sales and funding runs, so a funding 
run might precipitate a fire sale, and vice versa. From the 
SDG model, it is clear that a fire sale can lead to funding 
run, if the fire sale by the hedge fund drops prices to 
the point that the cash providers, seeing erosion in their 
collateral, begin to reduce funding. The SDG model also 

shows that there is pathway in the opposite direction: 
a drop in funding to the trading desk leads to a reduc-
tion in inventory, causing a drop in prices that reduces 
the value of the hedge fund portfolio, leading the prime 
broker to increase its margin level, thereby inducing a 
forced sale. The forced sale will add yet another positive 
feedback loop to the initial price impact that came from 
the trading desk. So actions that are reasonable locally 
can contribute to adverse global consequences.

For the simplif ied bank/dealer network in 
Exhibit 3, one can perhaps manually identify and ana-
lyze all the feedback loops listed in Exhibit 5. However, 
for a more realistic version of this network, as shown 
Exhibit 10, where there are multiple hedge funds, mul-
tiple banks/dealers, multiple clients, various derivatives 
and structured products, it is virtually impossible to 
identify and analyze all such loops manually. This, again, 
highlights the need for the SDG framework, which can 
be automated to handle larger systems.

E X H I B I T  9
Funding Run Loops

E X H I B I T  8
SDG Model for Bank/Dealer Funding Run Example
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A further advantage is that the framework allows 
us to formulate more sophisticated models, as and when 
we need them, in a methodical manner. For instance, we 
now show how we can add numerical gains (Vaidhyana-
than and Venkatasubramanian [1996]) on all the edges 
connecting various nodes and perform a quantitative 
analysis of how shocks of different magnitudes might 
propagate through the system. The gains used in this 
example are for illustrative purposes only and are not 
meant to ref lect actual market conditions. In practice, 
these gains can be estimated using a combination of 
historical market data and the judgment of experienced 
market professionals.

SEMIQUANTITATIVE ANALYSIS

Consider a loop of the form (v
1
, v

2
, …, v

n
, v

n+1
 = v

1
), 

where each pair of nodes (v
i
, v

i+1
) is connected by a 

directed edge. Suppose the value of node v
i+1

 as a func-
tion of the value of node v

i
 is given by the functional 

relationship v
i+1

 = f
i
(v

i
). The semiquantitative analysis 

proceeds in two steps:

1. Initiate a disturbance at node v
1

2. Propagate the deviation through the nodes v
2
, 

v
3
, …, v

n
 back to v

n+1
 = v

1
.

E X H I B I T  1 0
More Realistic Bank/Dealer Configuration
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We are interested in quantifying whether the loop 
amplifies or diminishes the initial disturbance.

Let δv
i
 = Δv

i
/v

i
 denote the relative change in the 

value of node i. Then

 

( )

)

)
1

1 1

1

1

v
v

f 1 f v

f v(1(

f 1

f v(1(

i
i

i

i 1ff 1 i i

i i1ff 1(

i 1ff 1

i i1ff 1(
i 1

( )(11v v )1)i i 11)

( )(1 )1 1v vi i ( );1 1vi i

δ =vi

Δ =

= − 1

1 1) −

1(

1

1(

 (1)

Thus, the relative change in the value δv
i
 is a 

function of both the relative change δv
i−1

 and the cur-
rent value v

i−1
. Note that when f

i−1
(v

i−1
) is linear, that is, 

f
i−1

(v
i−1

) = k
i−1

v
i−1

, the function F
i−1

(δv
i−1

) = δv
i−1

. In the 
sequel, we will suppress the dependence on the current 
value v

i−1
. We will denote δv

n+1
, that is, the relative distur-

bance in the value of node v
1
 after one iteration through 

the loop, by δv
1,f 

. From Equation (1), it follows that

 ( )δ =1, F= �f nF  (2)

For linear relationships, (that is, F
i
 is replaced by 

a constant gain k
i
)

(F k vi i1 FF i i) k iδ =v 1i 11 δv ))) δ

Thus, when a loop contains only linear edges,

1, 1 1 1k k k1 vf nk nδ =1v1 f δ−

We now illustrate this approach on Loop 7 displayed 
in Exhibit 11. Suppose the starting node v

1
 = P

BDM
. Our 

goal is to determine the relative change in the value of 
v

1
 = P

BDM
 after one iteration. We assume that the market 

conditions are described as follows:

 P
BDM

 = $10
 C

HF
 = $1 billion

 C
TD

 = $1 billion

E X H I B I T  1 1
Loop 7 as an Example
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 A
PB

 = $5 billion
 A

HF
 = $5 billion

 A
TD

 = $15 billion
 A

FD
 = A

PB
 + A

TD
 = $20 billion

 L
HF

 = A
HF

 − C
HF

 = $4 billion
 L

TD
 = A

TD
 − C

TD
 = $14 billion

 Q
HF

 = 500 million shares
 Q

TD
 = 1.5 billion shares

 χ
MM

 = 25%
 χ

PB
 = 25%

These values are chosen simply to illustrate the 
methodology; we do not claim that the values chosen are 
representative of true market conditions. We will first 
compute the functions F

i
(δv

i
) for each of the nodes, and 

then compute the feedback effect.

1. δ λ
HF

 = F
1
(δP

BDM
). The leverage

λ = =

≡

1
1 /−

1
1 /− ( )

)1

A/ /(

f P(1

HF
HF HF HF BDM HFHH

BDM

From Equation (1), it follows that

( )
(1 )1F (1

P
P Q P L)BDM

HF BDPP M

BDPP M HQ F B(1 PPHH DM HF

δ =)
− δLHF

+ δ

2. δL
HF

 = F
2
(δλ

HF
). The relationship between L

HF
 and 

λ
HF

 is as follows. The price change δP
BDM

 results in 
a change in the leverage λ

HF
; this change triggers 

a trade since the hedge fund is targeting a fixed 
leverage λ

HF
. Thus, the hedge fund either takes on 

more loan or pays down some of the loan in order 
to reset the leverage back to λ

HF
. Thus, the relative 

change δL
HF

 can be computed from the relation

λ = + δ + δ
+ δ −

(1 )
(1 )

A P+ δ(1 L L
P+ δA (1 LHF

HF BDPP M H+ δ) L F HLHH FHH

HF BDPP M H) L FHH

 that is,

( )
δ = + δ − λ(1 )

A

L
PHF

HF

HF
BDPP M Hλ) FHH

Using the relationship that δλ
HF

 = F
1
(δP

BDM
), it 

 follows that

( )δλ = λ −) λ( )δλ ( 1λ − )
2 (( )δλF2

A
L

HF HF

HF
HF

3. δQ
HF

 = F
3
(δL

HF
), δQ

TD
 = F

4
(δQ

HF
), and 

δ∈
TD

 = F
6
(δλ

TD
). The functions f

3
, f

4
, and f

6
 are all 

linear; therefore, it follows that F
3
(δL

HF
) = δL

HF
, 

F
4
(δQ

HF
) = δQ

HF
, and F

6
(δλ

TD
) = δλ

TD
.

4. δλ
TD

 = F
5
(δQ

TD
). When the trading desk purchases 

(resp. sells) shares the capital C
TD

 of the trading 
desk decreases (resp. increases); moreover, the rela-
tionship is linear. Therefore, δC

TD
 = −δQ

TD
. The 

relative change in leverage δL
TD

 is given by

δλ = + δ
−

= −δ
+ δ

(1 )
/ 1

A
C C+ δ(1

A
C

A C/
C
CTD

TD

TD TD

TD

TD

TD TD

TD

TD

Therefore, it follows that

δ = δ
− δ

( )δ
15F (δ5

Q
QTD
TD

TD

5. δP
BDM

 = F
7
(δ∈

TD
). The relationship between P

BDM
 

and ∈
TD

 is as follows. So long as ∈
TD

 ≤ 0, that is, the 
trading desk leverage λ

TD
 is less than or equal to the 

leverage set point λTD
SP , no action is taken. How-

ever, when the ∈
TD

 > 0, the trading desk sells assets 
to reset the error ∈

TD
 = 0. This trading impacts the 

price P
BDM

. Thus, there is a complex nonlinear rela-
tionship between δ∈

TD
 and δP

BDM
 that needs to be 

calibrated from data. For the purpose of illustrating 
the SDG approach, we assume

∈
δ =

δ

δ

⎧
⎨
⎪⎧⎧
⎨⎨
⎩⎪
⎨⎨
⎩⎩

( )δ∈
0.1 normarr l markerr t condition

2 c∈δ risis condition7F7 TD

TD

TD

Now we are in a position to compute the loop 
gain δP

BDM,f/δP
BDM

 using Equation (2) and the nominal 
market condition described above. δP

BDM,f
 can be deter-

mined for a given δP
BDM,i

.
Exhibit 12 reports the loop gains for all 14 loops for 

both normal and crisis conditions, and for a small (1%) 
and large (5%) initial decrease. Specifically, for Loop 7 
under normal market conditions, a 1% initial decrease 
in P

BDM
 results in a 0.53% final decrease in P

BDM
, that 

is, the feedback through the system stabilizes the price. 
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E X H I B I T  1 2
Results for All Loops
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However, under crisis conditions, the same sale could 
trigger a 10.53% decrease in price. Thus, iterating over 
the loop several times leads to a fire sale situation.

Since the SDG approach allows one to model how 
the system might behave to price shocks under normal 
and abnormal conditions, this approach can serve as a 
framework for methodical stress testing and monitoring 
the critical nodes and edges. The next level of sophistica-
tion would be to develop differential- (or difference-) 
equation-based dynamic models, which provide a more 
detailed analysis of the dynamic behavior of the financial 
system.

CONCLUSION

The financial system is self-organized; it did not 
develop as a carefully engineered system with proper 
consideration given to the stability and the manage-
ment of its complex interactions. Because of this, it is 
all the more critical to understand the paths of positive 
and negative feedback, alternative routes for funding 
and securities f lows in the event of a shock to one node 
or edge of the network, and more generally, how the 
dynamic interactions in the system can create vulner-
abilities and instabilities.

We suggest that a process systems engineering 
framework is the appropriate modeling paradigm for 
this challenge. In particular, causal models represented 
as SDGs, and the associated process hazards analysis 
framework, can add the critical capabilities missing in 
the current network-based approaches that are emerging 
as the leading modeling framework for the f inancial 
system. The SDG framework adds crucial information 
to the context of linkages in a network in terms of the 
direction of various f lows and whether they contribute 
positive or negative feedback, thereby providing a sys-
tematic framework for analyzing the potential hazards 
and instabilities in the system. We show that this frame-
work can reveal hidden instabilities and mechanisms 
of failure that may not be apparent in a network-based 
perspective for large financial systems. It can highlight 
and help us monitor dynamics such as f ire sales and 
funding runs, where actions that are locally stabiliz-
ing—for example, where a financial institution takes 
risk-management actions without an understanding of 
the systemic implications—might cascade to globally 
destabilizing consequences.
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